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STRESS FIELDS IN COMPOSITE LAMINATES

N. J. PAGANO

Nonmetallic Materials Division, Air Force Materials Laboratory, Wright-Patterson AFB, OH 45433, U.S.A.

(Received 3 June 1977; revised 28 October 1977; received for publication 1 December 1977)

Abslracl-A new theory is proposed to define the complete stress field within an arbitrary composite
laminate. The theory is based upon an extension of Reissner's variational principle to laminated bodies.
Weaknesses in previous laminate theories are discussed and it is demonstrated how these are overcome in
the present formulation. Comparison with existing numerical elasticity solutions for a class of boundary
value problems in which steep stress gradients are present shows extremely close agreement.

INTRODUCTION

In the contemporary technology of structural composite materials, major deficiencies exist with
respect to our ability to determine the stress field within a multilayered composite laminate. In
most cases, even a superficial or qualitative understanding of the nature of the stress field in
regions of steep stress gradients has not been established. A notable exception is the ap­
proximate treatment[I,2] of the classical free edge problem in laminate elasticity[3,4],
however, similar treatments have not been advanced for other laminate stress concentration
problems. In the absence of a practical means of laminate stress analysis, it is not possible to
develop an understanding and general characterization of the various insidious failure modes
which been demonstrated in composite laminates [2,5-8]. The latter references all document
heterogeneous damage development which varies through the laminate thickness and suggest
the importance of defining the stress field within each layer, particularly in regions of stress
concentration, where classical lamination theory [9, 10] errs badly [4, II, 12]. This is contrasted
to the ultimate failures of certain laminates in the presence of stress risers, which only seem to
depend upon the overall laminate properties [13, 14], rather than the details of the stacking
sequence, although the details of the damage development and growth in these laminates are a
function of stresses in the individual layers [15].

Although the finite element method is widely used in the design of practical composite
structural elements, e.g. [16], its application is limited to determination of force (per unit length),
rather than stress distributions. This is accomplished through the assumption of a simplified
displacement field-that which is assumed in classical lamination theory. This permits one to
define effective elastic properties of the laminate as a whole, and to compute integrated values
of the in-plane stress components across the laminate thickness. In fact, once the force
distribution has been defined, the associated layer stresses may be computed, however, as
mentioned earlier, this procedure is not generally reliable. At present, therefore, determinations
of failure loading and mode of failure in practical composite structures are based primarily on
experimentation with prototype bodies. These comments are not made with the intention of
disparaging the contemporary practice since the presence of structural complexity in the form
of holes, connections, edges, and 'discontinuities in thickness of many-layered composites may
overwhelm any attempted analytical technique.

The basic limitation imposed by numerical solutions to the laminate elasticity problem has
been illustrated in a recent paper by Wang and Crossman [17] in their treatment of the free edge
class of boundary value problems. In order to achieve a realistic prediction of the stress field by
use of the finite element method, sixteen elements in the thickness direction were required
within each layer in the region of steep gradients. A total of 196 elements per layer were
employed. To accomodate such a large array, it became necessary to employ a special matrix
storage scheme for the purpose of reducing computer storage and running time. Similarly,
Pipes [18] required a lengthy extrapolation procedure in conjunction with the finite difference
method in order to achieve a satisfactory solution for a two layer free edge boundary value
problem.
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Another approach to the problem of laminate stress analysis, e.g. Rybicki [19]. utilizes larger
elements that possess a more complex stress field. Stanton et at. [20] employ a tricubic
isoparametric discrete element and a system to automate the construction of finite element
models. The latter approach effects an appreciable reduction in data input requirements. This
added efficiency seems to be the major advantage of "large element" formulations, as the
number of degrees of freedom is comparable to those employed in the more routine methods.
Despite the refinements, however, computed laminate stress fields are not universally accurate,
as another feature of laminate elastic analysis, i.e. the presence of stress singularities. is a
severe obstacle to the execution of numerical elasticity solutions. Unfortunately, the order of
these singularities has not been defined for anisotropic layers, i.e. the extension of Bogy's work
on isotropic quarter-planes [21] has not been accomplished.

On the other hand, approximate theories have been proposed in attempts to execute realistic
laminate stress analysis. The most popular of these is the aforementioned classical lamination
theory, op. cit. [9, 10]. While this theory has been shown to yield reasonably accurate stress
calculations in certain classes of boundary value problems under a limited range of geometric
parameters [22-24], its assumptions are too restrictive for general application. Theories in­
corporating laminate "shear deformation" [25, 26] lead to accurate deflections in bending
problems but offer no hope for improved stress computations [26]. The higher-order plate
theory derived by Whitney and Sun [27] was applied by Pagano [28] to examine the interlaminar
normal stress distribution in the free edge boundary value problem but only on a plane of
symmetry.

The prominent common feature of the theories discussed in the p~evious paragraph is an
assumed displacement field that is continuous across the entire laminate thickness. The theories
differ only in their specific choice of the assumed displacements. This displacement assumption,
however, guarantees discontinuous tractions at interfaces between layers of different elastic
moduli except under elementary loading conditions. Further, the edge (traction) boundary
conditions appropriate to this approach are. in general. insufficient to guarantee equilibrium of
sub-regions containing the edge boundary under the known (pointwise) tractions, op. cit. [28]t.
Hence, use of this displacement approach and possible extensions to allow even higher order
variations through the thickness, is unacceptable for laminate stress field analysis.

Another class of approximate laminate theories represent attempts to generalize those
discussed above and are based upon the assumption that the displacement components are
linear functions of z, the thickness coordinate, within each layer. In this formalism then, the
displacements are piecewise continuous functions. Among the theories which rely on this
approach are the so-called effective stiffness theories pioneered by Sun, Achenbach, and
Herrmann [29, 30]. Sun and Whitney [31] treated various theories in this class and demonstrated
that, given displacement continuity at all interfaces. the number of field equations depend on N
(number of layers) only when traction continuity at interfaces is ignored. Otherwise, the
number of field equations is only dependent on the generality of the initial assumption, i.e.
whether the linear term in z for transverse displacement w is included or dropped. Hence the
number of field equations is constant for all laminates. Since the same statement can be made
with respect to the number of edge boundary conditions, the deficiency of the aforementioned
theories [9. 10. 25-27] with respect to sub-region equilibrium applies to the present class as well.
The latter theories do, however. yield a more realistic determination of effective laminate
dispersion characteristics, which provided the motivation for their development. The assump­
tion of piecewise linear displacements, as well as w = w(x, y), leads to the theory of
Srinivas[32], in which the number of field equations and edge boundary conditions does depend
upon the number of layers. Therefore. interface traction continuity conditions cannot be
satisfied [31]. Furthermore, in this theory, the interlaminar normal stress, which has been shown
to be responsible for delamination failures [2], has been neglected. Despite the accurate results
obtained for vibration frequencies. deflection, and axial stress in the particular bending
problems treated in [32]. the theory is not generally applicable for laminate stress analysis.

tIn order to guarantee equilibrium of a given sub-region containing the edge boundary. we must have the freedom to
prescribe at least 5 traction boundary conditions (3 force components and 2 couples) on its edge. Therefore, if we wish to
guarantee equilibrium of each layer of a laminate. we need at least 5N edge boundary conditions. where N is the number
of layers in the laminate.
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Finally, an approach suggested by Pagano [28], i.e. treatment of each layer as a plate
governed by the Whitney-Sun theory [27], lacks generality since it can be shown that less than
5N edge traction boundary conditions are available in that approach. Furthermore, as a
consequence of interface displacement continuity, the natural edge traction boundary condi­
tions are coupled, i.e. they involve functions of the tractions acting on two (adjacent) layers.
Thus, extension of this approach by allowing higher order displacements is not advisable, since,
as in the previous approaches, proper equilibrium of each layer under its prescribed tractions
cannot be enforced.

The previous discussion has defined a clear need to examine new approaches for laminate
stress analysis. All known approximate laminate theories are based upon assumed displacement
fields, which as we have seen, lead to results lacking credibility. In this work therefore, we shall
set down requirements to be satisfied by an acceptable laminate field theory and proceed to
develop a self-consistent theory in accord with the requirements, which are: (a) All six stress
components are non-zero in general. (b) Traction and displacement continuity conditions at
interfaces between adjacent layers are satisfied. (c) Consider a region within the laminate that is
arbitrarily located except that it is bounded by any two of the parallel interfaces of the
laminate. We shall require that the computed stress field acting on the surfaces of the arbitrary
region, in conjunction with the prescribed tractioil boundary conditions (pointwise, in the
elasticity sense) on those portions of the external laminate boundary which lie in the region,
satisfy the conditions of vanishing resultant force and moment identically. Thus, every layer
must satisfy this requirement, which we shall henceforth refer to as "layer equilibrium". This
implies that appropriate force variables in the field theory are force and moment resultants (per
unit length) acting on the cross sections of a layer and interlaminar stresses on its interfacial
surfaces. Although sub-regions not bounded by interfacial planes need not satisfy layer
equilibrium, in problem solving, additional interfaces may be introduced conceptually to
improve solution accuracy. In fact, we may view the purpose of this work as an examination of
effectiveness of mathematical laminate models in which the response is defined in terms of
force and moment resultants and interlaminar stresses.

Although the above requirements do not define a unique theory, we shall treat the simplest
theory within this class in the present work. The theory is based upon a variational theorem
derived by Reissner [33] and permits the treatment of discontinuous interfaces, i.e. interface
cracks. Known solutions for the free edge boundary value problem in laminate elasticity, where
pronounced stress gradients occur, will be utilized to assess the consequences of the present
concepts.

VARIATIONAL PRINCIPLE FOR LAMINATES

The physical problem of interest in the present work is that of a laminate which is built of
anisotropic elastic layers of uniform thickness and is subjected to prescribed tractions and/or
displacements on its boundary. The body is bounded by a cylindrical edge surface and upper
and lower faces that are parallel to the interfacial planes. Since it is necessary to consider both
traction and displacement continuity conditions at the various interfaces, it is logical to examine
Reissner's variational theorem [33] as a mechanism to develop the appropriate field equations.

Reissner has shown that the governing equations of elasticity can be obtained as a
consequence of the variational equation

8J =0 (I)

where

J =f F d V -1 TjUj dS (2)
v s'

and

1
F = 2. Ujj(Uj.j + Uj,j) - W (3)
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In the above equations, W is the strain energy density expressed in terms of the stresses
Ujj(i, j = 1,2,3), V is the volume, S the entire surface T; the prescribed tractions, Uj the
displacement components. and S' is the portion of the boundary on which one or more traction
components are prescribed. In what follows, we shall let S" represent the portion of the
boundary on which one or more displacement components are prescribed. Summation over the
range of repeated subscripts will be understood in this work. It is also understood that both
stresses and displacements are subjected to variation in the application of eqn (I).

We shall now express the form of eqn (l) for the laminated body, which is composed of N
layers, the volumes of which are represented by Vk(k = I, 2, ... N). For conceptual purposes,
we may let the layers be numbered consecutively from the bottom (k = I) to the top (k = N).

Thus we get, by definition

NJ [I Jlk) f-J = ~ -u,,(u,,+ u·)- W dVk - T'U dS
2 '} I,J J.l I I

'=1 V, S'
(4)

where the superscript (k) attached to the bracket signifies that each variable within the bracket
is associated with the kth layer. We shall also incorporate expansional strains eij [34], or strains
produced in the absence of stress, in the present theory, so that

(5)

Substituting (4) into (l), making some trivial manipulations, and applying the Green-Gauss
Theorem gives

N J [(U. + u· aw) Jlk))' './ /.1 _ 8u" - u .. ·8u· d Vk~I v, 2 aUij I} '/.} I

- r, T;8u; dS + f f T~k)8u\kl dSk = 0Js ~I S,
(6)

where Sk is the surface enclosing Vk and T\kl are the tractions components acting on Sk. We
should recognize that the surfaces Sk and Sk+1 contain a common region, namely, the interface
between the respective layers. Hence, we shall define surface h as the portion of Sk which
contains the top of the kth layer, Ik and Ik as the regions of h belonging to S' and S"
respectively, and 1';: as the portion of h that does not belong to either S' or S". Observing that
the edges of the layers. as well as the top of the Nth layer and bottom of the first layer, all
belong to S, eqn (6) may be expressed as

N J [ W J1kl fU;j + Uj; a _
)' (. 2 . -a.. ) 8Uij - ujj.j8u; d Vk+ (Ti - Ti)8ui dS
~I v, u,/ S'

(7)

Clearly, the vanishing of the volume integrals requires satisfaction of the equilibrium equations
and stress-displacement relations within each layer. The vanishing of the surface integrals on S'
and S" require that one term of each of the products (TI U10 TzUz, T3U3) be prescribed at each
point on S since 8Ui is arbitrary on S' and it vanishes on S". Finally, the integrals over
l'k(k = 1,2, ... N -1) vanish when tractions and displacements are continuous in these regions.
Hence, eqn (7), which represents the statement of Reissner's theorem for laminated bodies, will
be applied in the derivation of our approximate laminate theory in the next section.

DEVELOPMENT OF THEORY

Consider a single layer of thickness h within the laminate. We let x and y represent the
coordinates in the midplane of the layer, which is bounded by the planes z = ±h/2 and the
cylindrical edge surface whose intersection with the midplane is called L. The region enclosed
by L will be denoted by R. The interlaminar stresses U:, Tn and Tvz at the top of the layer are
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denoted by P2, t2 and 52, respectively, while the corresponding stresses at the bottom of the
layer are designated as Ph t l and 51' Superscripts (k), which identify the layers, will be dropped
except when they are need for clarity.

The simplest assumption consistent with realistic stress analysis is that the in-plane stress
componentst are linear functions of z, viz.,

(8)

where Nx ••• Mxy are functions of x and y only. Obviously, these functions represent the usual
force and moment resultants arising in plate theory. We have also indicated the symbols for the
stress components in contracted notation since this system will be convenient for future
developments.

We now substitute (8), along with the values of the interlaminar stresses at Z = ±h/2, into the
differential equations of equilibrium, which leads to the following distributions

(9)

where the shear resultants Vx, Vy and the functions Nz, Mz given by

(10)

are functions of x and y alone. The functions on the right hand side of eqns (8) and (9) are not
all independent as they are related via equilibrium and continuity considerations, but these
relations will be subsequently developed by means of the variational equation (7).

In general, the strain energy density of an elastic anisotropic body is given by

(II)

where contracted notation has been employed, with Sjj representing the compliance matrix and
ej the engineering expansional strain components. Since structural composite laminates are
generally built such that each layer possesses a plane of elastic symmetry parallel to xy, we
shall treat this material class (monoclinic) in this work although generally anisotropic layers
may be treated without difficulty. For monoclinic symmetry with respect to the xy plane, the
compliance matrix takes the form

SII
SI2 S22

Sij=
SI3 S23 S33 SYMM.
0 0 0 S44 (12)

0 0 0 S45 S55

SI6 S26 S36 0 0 S66

tNote that we refrain from assuming the form of the displacement field in accordance with the objectionable features
of that approach described earlier.



390

while

N. J. PAGANO

e4 = 2e23 = 0

e5 = 2en = 0
(13)

for monoclinic symmetry.
We now substitute eqns (8), (9) and (II), taking account of (12) and (13), into the variational

equation (7) and the integration with respect to z is performed. The appropriate field equations and
boundary conditions are determined by setting the coefficients of the arbitrary functions (first
variations) equal to zero. Only the final results of this lengthy procedure will be shown here.
The interested reader is referred to [39], where the complete mathematical details are presented.

In the derivation of the governing equations, the integration with respect to z gives rise to
weighted average displacements and displacements at the interfaces. Therefore, we make the
definitions

(14)

where f may represent either u, v or w, the x, y, z components of displacement, respectively.
We also let U2, V2, W2 represent the displacement components at the top of the layer and Uj, VI,

WI the corresponding functions at the bottom of the layer. Furthermore, for internal consis­
tency in the theory, we express the prescribed tractions on the appropriate portions of
boundary L as follows

- I (til 12Mnsz)
Tns=J; ns+-;;r-

_ =( )~+(Tl+T2)(12Z2_1) 3Vn(I_4Z2)
Tn: T2 TI h 4 Y + 2h f1

(15)

where nand s are local coordinates, which are respectively normal and tangent to L. We note
that TI and T2 give the values of shear stress Tn: at the bottom and top of the layer, respectively.
No restrictions are placed on the nature of the boundary tractions and/or displacements over
the remainder of the laminate boundary. FinalIy, the folIo wing contractions are introduced

Q
_ (4s 1 - s2)h ..!::"r

4 - 30 10

Q
_ (4t l - t2)h Vx

5 - 30 10

T_(4s2 -s\)h ~
4 - 30 10

T _(4t2- t dh Vx
5- 30 -10

R 1} = (6Pl + P2)h
2 -7Nzh ±30Mz

R2 70h

134} = i hw -~ IV _i v*+ (!!w* _E)
0'4 8 .y 8 .y 2 - 4 .Y 2

135} 3 A h _ 3 (h * if)=-hw --w --u*+ -w --
0'5 8 .x 8 .x 2 - 4 ,x 2

(16)
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Using the above definitions, and letting ex, ey, ez and exy represent the engineering expan­
sional strain components, we may now record the governing equations in the present theory.
The field equations, which consist of the elastic constitutive relations and the differential
equations of equilibrium, must be satisfied within each layer and are given by:

Constitutive equations

h(U:t - ex) = S"Nx+ S 12 Ny+ S 13 N, + SI6Nxy

h(-f- - ey) = S 12Nx+ S22 Nv + S23 Nz + S26NXY

*_ _ ~ _ S33h3w hez - S 13Nx+ S23 Ny+5 S33N: + S36 Nxy 10 (PI + P2)

h
2

*4" u.x= SllMx +S12My +S13Mz + S I6Mxy

h
2 *4" v.y= SI2 Mx+ SnMy + S23 Mz + S26Mxy

Equilibrium equations

Nx.x+ Nxy.v + t2- t l = 0

Nxy.x+ Ny.y+ S2- Sl = 0

(17)

(18)

Interface relations depend upon the nature of the prescribed conditions on the interfacial
planes, i.e. continuity or prescribed tractions and/or displacements may be specified. The latter
conditions occur in the case of a cracked interfacial region.
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Inter/ace conditions
(a) Continuity (k == 1,2, ... N -I)

N.1. PAGANO

(k) (hi)

P2 == PI

(19)

(k) (k) (k) (kl (k) (k+11 (k+l)(k+l) (k+IXhl)

{34 - 544 T4- 545 T5+ a4 - 544 Q4 - 545 Q5 == 0

(k) (k) (k) (k) (k) (k+I) (k+l)(k+1) (k+I)(hl)

{35 - 545 T4- 555 T5+ a5 - 545 1)4 - 555 Q5 == 0

(k) (k) (k) (k+l) (k+I){k+I)

12 - 533R2 + 11 - 533 R I == O.

(b) Prescribed Tractions and/or Displacements (k == 1,2 ... N -I)

(k) (k)

t2 == t2
or

(k) (k)

S2 == 52 or

(k) (k)

P2 == P2 or

(k+1) (k+l)

tl == t or

(k+1) (k+1)

Sl == 51 or

(k+11 (k+l)

PI == PI or

(k) (k) (k) (k) (k) (k)

{35 - 545 T4 - 555 T5 == -U2

(k) (k) (k) (k) (k) (k)

{34 - 544 T4 - 545 T5 == - 62

(k) (k) (k) (k)

12 - 533R2 == - W

(hI) (k+l)(hl) (k+l)(k+l) (k+1)

a5 - 545 Q4 - 555 Q5 == U,

(k+l) (k+I)(k+1) (k+l)(k+l) (k+11

a4 - 544 Q4 - 545 Q5 == VI

(k+IJ (k+l)(k+l) (k+l)

11 - 533 R I == WI

(20)

where eqns (20) are to be understood in the sense that, at each interface, any combination
which contains one equation from each line can be used to represent the interface boundary
conditions in any region of the interface for which (19) are not prescribed.

Finally, the boundary conditions on the external surfaces of the body are given by:

Boundary conditions
(a) Edge sur/ace. For the edge surface, one term from each of the following products must

be prescribed for each layer (superscripts k are omitted)

N - N - M * M * (3 Vn TI +T2) -
nUn, nsUs' nU n' n.•U S' -'-I --2- w,

(21)

(b) Top sur/ace. The boundary conditions on the top surface are the same as the first three
lines of (20) with k == N.

(c) Bottom sur/ace. The boundary conditions on the bottom surface are the same as the last
three lines of (20) with k == O.

This completes the development of the present theory. We observe that the governing eqns
(17)-(20), plus the boundary conditions on the top and bottom surfaces, continue a system of
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23N equations in terms of a like number of unknowns. The system can be reduced to I3N
equations by solving (17) for the force and moment resultants in terms of the weighted
displacement functions and interlaminar stress components and substituting into the remaining
equations. Inspection of the governing equations reveals that interfacial displacements will only
appear in the form of prescribed functions, hence they are not to be considered as dependent
variables in the present theory. From (21), we see that 7N edge conditions are required in this
theory. In the event that only edge tractions are prescribed in a given boundary value problem,
these 7N edge functions may be taken to be the 3N force resultants, 2N moment resultants
and 2N interlaminar shear stresses at the top and bottom of every layer.

Clearly, the requirements established in the introductory section are all satisfied by the
present theory, in particular, the principle of "layer equilibrium". Furthermore, the generality
of the interface conditions, (19) and (20), allow for the presence of interfacial cracks in the
treatment of specific boundary value problems. Finally, the usual (physically meaningful)
equations of equilibrium are represented by the first, second, fourth, and fifth of (18), along with
a linear combination of the third and seventh of (18).

COMPARISON WITH FINITE ELEMENT RESULTS

In this section we shall relate the response predicted by the present theory to that given by
numerical elasticity solutions for several problems of practical and theoretical interest. We shall
treat the class of boundary value problems known as the free edge problem in which a laminate
of finite width is subjected to a uniform axial strain €x = € [4]. The origin of coordinates is
located at the center of the laminate and each layer is reinforced by a system of parallel fibers
oriented at an angle 8 with the x-axis as shown in Fig. 1. The fibers in the various layers all lie
in planes parallel to xy, and the laminate is symmetric, i.e. 8(z) = 8(-z). In the analysis of the
stress field, which is only a function of y and z, each layer is treated as a homogeneous,
anisotropic body represented by its effective moduli and stresses will be denoted by functions
of the form f(y, z).

Comprehensive results based upon the finite element method have recently been presented
by Wang and Crossman [17] for this class of boundary value problems in laminate elasticity.
Hence, that work will be employed here to compare specific results given by the present theory.
Two particular laminates; [0,90], in which the values of 8 in consecutive layers are 0°, 90°, 90°,
0°, and [±45J, in which the orientations are 45°, -45°, -45°,450, will be examined in this study.
The layers are of equal thickness h, the laminate width is 2b = 16h, and the moduli in the planes
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Fig. 1. Laminate geometry.
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of elastic symmetry of each layer are given by

Ell = 20 x 106 psi, E22 = E 33 = 2.1 X 106psi
0 12 = 0 13 = 0 23 = 0.85 X 106psi
Vl2 = VI3 = V23 = 0.21

where I, 2 and 3 refer to the fiber, transverse, and thickness directions, respectively, and V12,

for example, is the Poisson ratio measuring strain in the transverse direction due to uniaxial
tension in the fiber direction.

In Figs. 2-5, we compare various features of the response for the [±45] laminate as given by
the present theory [35] and the finite element solution of [17]. The values of N in these figures
correspond to the number of sub-layers used in the present theory to model one-half of the
laminate. Thus, N = 6 implies that each physical layer of thickness h in the body has been
modeled by three sub-layers, each of thickness h/3, while N = 2 indicates that each physical
layer is treated as a unit.

In Figs. 2 and 3 are shown the distribution of (Tx and Txy ' respectively, along the width of the
laminate at the center of the top (physical) layer. The functions given by the present theory
were computed via eqns (8). The results for N = 6 and the finite element solution are nearly
coincident for all values of y, while the N = 2 results differ by only a few percent in the
boundary layer region.

Even the N = 2 result agrees quite well with that of the finite element solution for the width
distribution of Tn at the ±45° interface. However, a singularity is expected at this level at the
free edge[4. 17]. The presence of a singularity introduces some ambiguity in the finite element
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Fig. 2. Distribution of U x along center of top laver iz = (3/2) hl.
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solution, so that the curve given here involves some judgement in the interpretation of the
numerical results. On the other hand, the singularity is manifested in a different way in the
present theory, i.e. the stress component Txz at the singular point grows with increasing values
of N. Whether a finite limit is approached for large N has not been established. This situation is
similar to the rise in average stress in the element adjacent to the singular point as the element
size decreases in the finite element method. However, the present theory contains no singularity
(see [35]), consequently the computed stress distribution is an exact solution in this formulation.
The growth of stress component Txz(b, h) with N is shown in Table I. The result for N =3
represents the average given by the case in which the lower layer is represented by 2 sub-layers
and the upper layer by one, and the opposite situation, although the two results are nearly
identical. The same interpretation is invoked for N = 5. Unfortunately, because of the magni­
tudes of the numbers involved in the solution approach employed in [35], values of N larger
than 6 could not be considered. Clearly, the manner in which singular behavior is portrayed in
the present theory needs further study. In particular, the approach by which one correlates the
analytical results with delamination failure tests needs consideration.

Table I. Growth of maximum stress with N in [±45]

N r (b,h) / 10
6

e (psi)xz

2 1.664

3 I. 798

4 2.017

5 2.102

6 2.213
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Although displacement components are not dependent variables in the present theory, the
weighted displacement functions can be used to approximate them with the aid of an assumed
variation within each layer. For example, if we assume that axial displacement u is a linear
function of z within each layer, by use of (14) we can show that

(22)

where z. is measured from a local coordinate system at the center of the kth layer. Agreement
between this approach and the finite element result for axial displacement distribution across
the width of the top surface is quite good as shown in Fig. 5.

In Fig. 6, the distribution of U z along the width direction on the central plane (z = 0) of the
[0,90] laminate is shown. Clearly, the present theory with N = 6 agrees wuite well with the finite
element result, while the N = 2 result appears accurate except in a region very close to the free
edge. Not shown on the figure is the result for N = 4, which has a very slight hump near the
free edge and attains a maximum value close to the N = 6 result.
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Figure 7 illustrates the width-dependence of U z at the interface between the 0° and 90°
layers, where in contrast to Fig. 6, a singularity is expected at the free edge owing to the
discontinuity in elastic properties. The finite element solution gives strong evidence of the
singularity since extreme variability occurs in the neighborhood of (b, h). Because of this, the
finite element results are somewhat subjective in this region. Again, the N = 6 result is closer to
the finite element curve than that of N = 2. As before (Fig. 4), the present theory yields finite
maximum stresses which appear to grow monotonically with increasing N at the singular point.

Comparative results for the distribution of 1 yz at the 0°_90° interface are shown in Fig. 8.
The present theory satisfies the traction-free boundary condition, however, whether the finite
element solution, or indeed, an exact elasticity solution, satisfies this condition (see [36]) is not
known. However, generally reasonable agreement can be observed. According to the new
theory, it appears that the function is approaching a finite peak value, although we cannot be
certain until the solution for larger values of N is determined.

Variation of transverse displacement v at the top surface is shown in Fig. 9. The values in
the present theory were defined by approximating the layer displacement as a linear function of
z, which leads to an equation of the same form as (22). Excellent agreement is seen to occur
between the two solution techniques.

An extremely steep stress gradient at an (apparent) singularity in U z was reported by
Rybicki and Pagano [37] for a free edge problem in which one layer was isotropic. Using the
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moduli given in [37], comparative results are shown for the distributions of CTz at the interface
(Fig. 10) and central plane (Fig. II), where comparable agreement with previous results can be
observed.

CONCLUDING REMARKS

We have derived an approximate theory for the stress analysis of laminated bodies which
resolves the difficulties involved in previous theories based upon assumed displacement fields.
This theory is based upon Reissner's variational principle and assumed in-plane stresses that
are linear functions of thickness coordinate z within each layer. While the appearance of I3N
field equations and 7N edge conditions may seem to be overly cumbersome in actual problem
solving, this level of detail is required to compute realistic global stress fields. The present
theory guarantees satisfaction of "layer equilibrium" and allows the prescription of combina­
tions of interfacial tractions and displacements which permit treatment of such conditions as
interfacial continuity or cracks.

Comparison with existing solutions of the laminate free-edge class of boundary value
problems, in which very steep stress gradients occur, has led to encouraging results. Although
certain highly localized details of the stress field have been expunged when each layer was
modeled as a single unit, this approach may be adequate for purposes of structural design. If
this is not the case, based on the present study, the introduction of two or three sub-layers will
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produce dramatic improvements in accuracy. Alternatively, one may incorporate higher order
terms in z into eqns (8) to develop more accurate theories satisfying the basic requirements set
forth here. Such theories may eliminate the need for the use of sub-layers, but will obviously
lead to greater complexity in the solutions of specific boundary value problems.

The situation regarding singularities remains somewhat nebulous since the precise nature of
the singular stress field in the vicinity of an interface at an edge has not been established. We
can state however, that the finite element solution can be severely hampered by the presence of
elastic stress singularities, and stress field determination in their vicinity may become quite
subjective. On the other hand, the present theory contains no edge singularities, an advantage
from the problem solving viewpoint, however, examples have demonstrated a tendency for the
computed maximum stress to grow with decreasing sub-layer thickness. Thus, problem solving
has become simplified, but a method to interpret the stress predictions needs to be developed.
We should notice, however, that the singularities given in effective modulus theories are
mathematical artifacts in the treatment of fiber reinforced laminated bodies. This has been
discussed in [37, 38], where support was given to the use of integrated stresses rather than point
stresses in failure analysis. This point, together with the automatic satisfaction of layer
equilibrium, as well as the capability for objective determination of laminate stress fields, favor
the use of the present theory over approaches based upon numerical solutions of the elasticity
equations. Unfortunately, this work, along with that of [35] and [17], demonstrate the extreme
difficulties associated with attempts to realistically define the stress fields in laminates consis­
ting of very many layers.
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